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ABSTRACT
This paper investigates search techniques for multi-agent
settings in which the most suitable agent needs to be found
and the goal is to minimize the expected cost of search.
Given the ability to vary the extent of search, a search strat-
egy is a sequence of search iterations of varying extent.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics, Algorithms

Keywords
Economically-motivated agents

1. INTRODUCTION
In many multi-agent systems (MAS), we find problems

where an agent needs to find the agent with the lowest (or
highest, depending on the application) value, while the pro-
cess of learning the value of an agent incurs a cost. The agent
can minimize costs by publishing a maximum threshold for
the agents’ value, denoted a reservation value, requesting to
communicate only with agents that comply with that thresh-
old. The agents repeats the search process with higher reser-
vation values until at least one agent is found. This search
technique, which we call “iterative expanding search”, is ap-
plicable to many problems. For example, consider a police
dispatcher that needs to find an available officer within the
closest vicinity of an evolving event. The dispatcher can
broadcast a request that only officers within a predefined
distance to the event reply with their location. Similarly,
consider a sensor network in which the sink only needs the
highest sensor reading. In this case, it can reduce overall
transmission overhead by broadcasting a query for sensor
data above a certain threshold. We show how to derive the
optimal strategy for such techniques.

2. MODEL FORMULATION
We consider an agent searching in an environment where

N other agents, applicable to its search, can be found. Each
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of the N agents is characterized by its value to the searcher.
As in most search-related models, the values are assumed to
be randomly drawn from a continuous distribution described
by a PDF f(x) and a CDF F (x), defined over the interval
[xmin, xmax]. The searcher agent is assumed to be ignorant
of the value associated with each of the N agents, but ac-
quainted with the overall utility distribution function, which
is assumed to remain constant over time. The searcher is in-
terested in finding the agent associated with the minimum
value.

In its most general form, the cost of simultaneously learn-

ing the values of i other agents is β(i) ( d(β(i))
di

> 0). In order
to refine the population of agents whose values it plans to
learn, the searcher can publish a reservation value r request-
ing to communicate only with agents that comply with r. If
at least one agent complies with r, the search process ter-
minates. Otherwise, the agent sets a new reservation value
r′ > r and repeats the process. This continues until a non-
empty set is found, out of which the agent associated with
the minimum value is chosen. A strategy S is therefore a se-
quence [r1, . . . , rm] (xmin < ri < ri+1 ≤ rmax, ∀1 ≤ i < m),
where ri denotes the reservation value to be used in the ith

search round.
The process of initiating a new search round and com-

municating the next reservation value to the agents is also
associated with a fixed cost α (e.g., the cost of broadcasting
a query). The overall cost of a search round is thus α+β(i),
where i is the number of agents that comply with ri. The
expected accumulated cost of finding the best-valued agent
when using strategy S is denoted V (S). The searcher’s goal
is therefore to derive a strategy S∗ that minimizes V (S).

3. ANALYSIS
Consider a searcher agent using a strategy S = [r1, . . . , rm =

xmax]
1. If the agent needs to start the ith search round, then

there is necessarily no agent found below ri−1. The a priori
probability of such a scenario is (1 − F (ri−1))

N . Alterna-

tively, it can be expressed as
∏i−1

j=1(1−Fj(rj))
N , which is the

product of the probability that no agent was found in each
of the i − 1 previous rounds. Furthermore, upon reaching
the ith round, the searcher agent can update its beliefs con-
cerning the CDF of the values of the N agents, as it knows
that these are necessarily in the interval (ri−1,rmax]. The
CDF of any of the agents’ values in round i, denoted Fi(x)

1In order to guarantee search completeness when using a
finite sequence, the following should hold: rm = xmax.
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Figure 1: Comparative illustration of the proposed method to expanding ring search

(0 < i ≤ m), can be calculated as (xmin ≤ x ≤ xmax):

Fi(x) =

⎧⎪⎨
⎪⎩

F (x)−F (ri−1)

1−F (ri−1)
x > ri−1 ∧ i > 1

0 x < ri−1 ∧ i > 1
F (x) i = 1

(1)

The expected cost of using strategy S is the sum of the
expected cost of each of the m search rounds weighted by
the probability of reaching that round (r0 ≡ xmin):

V (S)=

m∑
i=1

[
α+

N∑
j=1

β(j)

(
N

j

)
Fi(ri)

j(1− Fi(ri))
N−j

]
i−1∏
j=1

(1−Fj(rj))
N

(2)

For the specific case in which the reservation values are
chosen from a finite set {x1, x2, ..., xm}, the optimal strategy
can be derived with dynamic programming. For the general
case in which the interval [xmin, xmax] is continuous and
the process is not constrained by a finite number of rounds,
the optimal search strategy must be derived with a different
methodology, since the optimal search sequence is either a
single search round in which the values of all agents are
learned or an infinite sequence of reservation values.

Theorem 1. The optimal sequence of reservation values
is either [r1 = xmax] or the infinite sequence [r1, r2, . . .],
xmin < ri < xmax, ∀i > 0, where Fi(ri) = Fj(rj) = P , for
some P and ∀i, j > 0.

The immediate implication of Theorem 1 is that the op-
timal search strategy can be expressed as a single value
0 < P ≤ 1, denoted the reservation probability. The searcher
can derive the optimal sequence of reservation values using
the following method: First, derive P . Since the optimal
sequence is infinite and the expected cost from each round
onwards is stationary, the expected cost of using P is:

V (P ) =
α+

∑N
j=1(β(j)

(
N
j

)
P j(1− P )N−j)

1− (1− P )N
(3)

The value P = P ∗ that minimizes V (P ) according to (3) is
the optimal reservation probability. Note that this deriva-
tion is distribution independent. Then, based on (1), the
corresponding reservation value to be used in each round
can be calculated by solving for ri in the equation P =
F (ri)−F (ri−1)

1−F (ri−1)
, i.e.,

ri = F−1(P (1− F (ri−1)) + F (ri−1)) (4)

4. THE EXPANDING RING ALTERNATIVE
A technique similar to iterative expanding search, called

expanding ring search, is widely applied in communication
networks to minimize the control overhead associated with

broadcast route discovery in on-demand protocols [1, 2].
The search is initially limited to a small radius around the
source and expands in rounds until the destination is found.
For comparative illustration, we compare our solution to
three well studied strategies for expanding ring search. One
reason for choosing expanding ring-based strategies is that,
when confronted with a new problem, one might naturally
turn to a related problem for solutions. After describing the
strategies, we present our results.

Two-Step Rule: A two-step strategy has the form S =
[r1, r2 = xmax]. The optimum can be derived from (2).
Fixed-Step Rule: A common design of a multi-round ex-

panding ring search strategy is to use a fixed increment be-
tween search extents [2]. For our purposes, we algorithmi-
cally derive the optimal m-round strategy S = [r1, . . . , rm],
in which ri = xmin+

ixmax−xmin
m

, ∀1≤i≤m (i.e., the one which
minimizes (2)).

California Split Rule: According to the California Split
rule, the search extent is doubled each round. A better
solution chooses values randomly from the interval ((

√
2 +

1)i−1, (
√
2 + 1)i] in each round i [1]. We adapt this method

to our problem such that ri = xmin + r(
√
2 + 1)i−1 and

rm = xmax, where r is an arbitrary value. Here we use the
value of r that minimizes the overall expected cost.

Results: The expected costs of the strategies were calcu-
lated under various synthetic settings. Figure 1 depicts the
performance (measured as the expected cost of search) of
the three expanding ring-based methods and iterative ex-
panding search as a function of the number of agents N
in the environment. The performance is evaluated in three
settings that differ in their search costs. The distribution of
values used in all three settings is Gaussian, with μ = 50
and σ = 12.5, normalized over the interval (0,100). As ex-
pected, according to Theorem 1, the performance of iterative
expanding search generally dominates the methods inspired
by expanding ring search. In some settings, an expanding
ring-based method can result in performance close to the
one achieved with iterative expanding search (e.g., two-step
technique in setting (C)) while it can perform significantly
worse in others (e.g., in settings (B) and (A)). Finally, we
observe that the number of agents in the environment is a
significant factor affecting performance of all methods.

5. REFERENCES
[1] N. B. Chang and M. Liu. Revisiting the ttl-based

controlled flooding search: optimality and
randomization. In MOBICOM, pages 85–99, 2004.

[2] J. Hassan and S. Jha. On the optimization trade-offs of
expanding ring search. In IWDC, pages 489–494, 2004.

1452




